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An alternate method is presented of obtaining the direct-interaction equations 
by combining the heuristic and rigorous derivations of Kraichnan. Within 
the framework of the model dyna]mic representation of Kraichnan's rigorous 
theory, we have developed the irreducible diagram expansion systematicall\ '~ 
by formalizing the perturbation argument of his heuristic derivation. It is 
hoped that the present work will provide a further insight into the analytical 
structure of the irreducible diagram expansion and bridge the gap apparent 
in the two original derivations of the direct-interaction equations given by 
Kraichnan. 
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1. P R O B L E M  S T A T E M E N T  

For  the covarian.ce level of closure for a tu rbu len t  flow problem.  
K r a i c h n a n  m2) has presented two d i s t i nc t - -one  heuristic and  one r igorous- -  
derivat ions for the so-called direct- interaction (DI) equations.  In the earlier, 

heuristic approach51) the DI equat ions were obta ined bv comput ing  the first- 
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order contribution of the unknown moments in the covariance and ~vcrtlged 
response equations from a perturbation induced by the direct-interaction 
terms. Although this derivation appeals strongly to physical motivation, 
the importance of this approach is the novel idea of developing perturbation 
about a certain flow state which is slightly different from the actual turbulent 
flow. This sort of perturbation will also play a'very essential role in our 
modal-interaction expansion. Kraichnan's later rigorous approach ~-~ involves 
imbedding the actual dynamic equation in a model dynamic problem which 
is constructed by assigning the random coupling coefficients to the nonlinear 
terms. The essential ingredient of this approach is the irredtlcible diagram 
expansion of the unknown moments in the covariance and averaged response 
equations. Since the random coupling coefficients bring about cancellation 
of all but the lowest-order irreducible diagram terms upon averaging, the D1 

equations are obtained as the exact statistical description of the model 
dynamic problem. Kraichnan has obtained the irreducible diagram expansion 
by invoking a variational argument which is somewhat intuitive and hence 
difficult to understand. Furthermore, his variational procedure does no t -  
render itself readily to a systematic evaluation of the ful] irreducible diagram 
expansion, although this may be an academic question at the present stage oL" 
the turbulence theory. 

The purpose of this paper is to show that an alternate way of deriving the 
D] equations is by combining the two distinct methods of Kraichnan that 
we havejust described. Working with the model dynamic representation of hi~ 
rigourous derivation, ~e shall show that the irredticible diagram e'q)an>i<m 
can be developed systematically by formalizing the kind of perturbation 
argument that Kraichnan has used in his heuristic derh,ation. This new 
perturbation procedure will be called the m0dal-interaction perturbation 
because it a]lows us to decompose the dynamic contribution of a certain 
moment in terms of the modal interactions of various forms. Since the modal- 
interaction perturbation is prescribed by a formal procedure, we can c.btain 
the irreducible diagram terms of a.ribtrary order in a completely systematic 
manner. It is therefore hoped that the present work will provide a further 
insight into the analytical structure of the irreducible diagram expansion and 
interrelate the two original derivations of the DI equations given by 
Kraichnan. Further, we shall state explicitly all the underlying assumptions 
involved in the DI approximation. In fact, they are neither stronger nor 
weaker than those invoked implicitly by Kraichnan. In the interest of readers 
who do not wish to delve into the details, the subsequent sections are 
subdivided into two parts: the first dealing with the immediate derivation 
of the Dt equations and the second part demonstrating consistency of the 
irreducible modaMnteraction expansions. 

As a prototype of the Navier-Stokes equations, the Burgers turbulence 
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equat ion has the followin,,~ d\namic,  model representat ion u~,in,,. ~ the no'~ation>; 
of  Ref. 2, Eqs. (11.11)-(.11.13): 

--27- - + t) M - '  Z '  a-7 k 
~ (1) 

[ a a'2 a ~ (x , t ) ]u~ (x , t )  
- -g/ - - -  v ax 2 ~ ax 

1 a 
-- 2 M-I"~" ~ "  (~,~,~-B ~.v us(x' t) u~_s(x, t) (2) 

B 

~ -  - -  ~' ~x" ~- ~X- ~(x, r) G~.Jx,. t:. x ' ,  t ' )  

a 
= - - M  -1 -~ y "  ~b~.~.~_~ &-7-v u~(x, t) G~_e./x, t; x', t') 

B 

+ 8~,, 8(t - -  t ')  8(x --  x ' )  (3) 

where ~, is the kinemat ic  viscosity and ( '~ denotes the average oxer an 
ensemble of  M identically' and independent ly  distributed rea]izatiop,~. The 
reality requi rement  states u~(x, t) = u*_~(x, t), where the asterisk denotes the 
complex conjugate.  Note  that  we omit  c~ = 0 in Y"~ and both  fl = 0 and 
/3 .=  (x in 3-'~. The r a n d o m  coupling coefficients qk~.~.,_,~ are assumed to be 
the same for every realization in the ensemble,  and the true problem corres- 
ponds  to all ~b = 1. The d,'s are subjected to the follo\~ing dxnamic  
restrictions: 

~ . ~ , ~ - . 8  , ~,~-~.-5.~,  * = r  . . . .  * 

The mean equat ion  (1) and the fluctuation equat ion (2) are. coupled through 
the Reynolds  shear stress and mean-f luctuat ion terms, and hence th.ey 
describe the evolutidn oF the mean and fluctuation fields. The response 
equat ion (3) describes the per tu rba t ion  of  u~(x, t) with respect ~o an 
infinitesimal dis turbance of" mode  y introduced at (x' ,  .~"). 

Kra ichnan  {2) has demons t ra ted  the following statistical propert ies:  F o r  
the identically and independent ly distr ibuted realizations, we have 

<u~(x, t) u~(x', r )  ...) = o (~ + 5 + "'" - o) 
and 

(Q..~(x, t; x ' ,  t ' ) )  ----- 0 (c~ =/= y). 

Under  the addit ional  assumpt ion  that  the realizations have an initial multi- 
variate  Gauss ian  distr ibution,  the covar iance 

U(x ,  t; x ,  t') = (u~(x, t) u~ ( x ,  t ' ))  

822[4/2/3-7 
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and the averaged response function G(x, t; x ' ,  t ')  == (G~.~(.r, t; x', t'); are 
independent of a. Furthermore, G~,~ is statistically sharp in the limit as 
M --~ co and 

: r  t ~ t t (u~(x, t) u~ ( x ,  t') u~(y, s) us ( y ,  s )> 

= (u~(x, t) u~*(x', t ' )F(u~(y,  s) uB*(Y', s ' ) )  + O ( M  -I) 

In view of this, the statistical equations of the covariance-level can be 
formulated from Eqs, (1)-(3): 

- v ax-- ~ + / 7 ( x ,  t)  ~ /~(x, t )  . 

1 
- -  2 8x U(x,  t; x, t)  (4) 

8 8 ~- 8 ] 
- - ~  - -  v ~ + ~ ~(x, t)  . U(x, t; x', t') 

= S(x ,  t; x ' ,  t ')  i5) 

3 8 2 8 ] 
-- V F x  ~ ~ s D(x, t) a ( x ,  t; x ' ,  t ') 

= t t ( x ,  t; x ' ,  t ')  -7 S(t - t ')  S(x - x ' )  

where 

Sgx. t; x ' ,  t ')  

= -- ~ M -I!'~ ~" (q~.B.~_~(alax) ,l~(x, t) u~_~(x, t) u~*(x',  t ' ) )  
B 

(7) 

H(x ,  t; x ' ,  t ') 

= - - M  -I/" T/" <~.B.~_~(alax) u~(x, t) G~_~.~(x, t; x', l')> 
B 

(8) 

Equations (4)-(6) are the same as Eqs. (i1.21), (11.17), and (11.18) of 
Kraichnan, (21 who closed them by developing the irreducible diagram 
expansions for S and H using a variational argument. We shall first obtain 
in Section 2 the irreducible modal-interaction expansions for u~ and G~..,. 
Such expansions, when introduced into (7) and (8), will give the desired 
irreducible diagram expansions for S and H, which in turn yield the DI 
approximation when we randomize the 4~ (Section 3). 
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2. T H E  M O D A L - I N T E R A C T I O N  P E R T U R B A T I O N  
E X P A N S I O N S  

Let us write for simplicity the dynamic equations (2) and (3) in the 
following forms: 

LG~,~(x; x') -+- ~ "  q5 . . . . . . .  uo(x) G . . . . .  (x; x') = 8~,y 3(x -- x') (9) 
ct 

Lug(x) -- -} ~ "  ~ . . . . . . .  uo(x) u~_~(x) = 0 (10) 
a 

where x denotes the space-time vector (x, t), 

L ~ ( a / a 0  - ~(a2/ax 2) + (a /ax)  ~(x, t), 

and ~,8,~-s = -~l-X/2r a/ax. We shall stipulate the following properties 
of.(9) and (10) as the basic underlying assumptions for the modal-interaction 
perturbation to be presented: 

(Ax) It is assumed that G~ .~(x; x') and u~(x) are known as the respective 
solutions of (9) and (10). 

(A 2) The G~,,(x; x') and us(x) are affected only mfinitesimailb when we 
remove a few product terms from the convolution sums. 

The first assumption A~ seems rather strange at first sight because it 
presupposes knowledge of the problem solution. This, howe~er, reflects the 
quirk of modal-interaction expansion in that each term of the expansion 
expresses an interaction made up of the factors G~,s and u~. Here, we do 
not look for the perturbation solutions of (9) and (10) in the usual sense. 
Since there are infinitely many product terms in the convolution sum of (9) 
and (10), we can justify the second assumption A2 by noting that each product 
term of O(M -1/2) can influence the Q, ; (x;  x') and ~t~(x) only infinitesimally 
in the limit as M ~ co. We shall first develop the modal-interaction expansion 
for G~.,,(x: x'), which is somewhat simpler than that . for  H~(x) due to the 
lineari'ty of (9). 

2.1. Response Equation (9) 

It is important to observe that the diagonal G~.~(x; x') describes the 
propagation of disturbance, whereas the nondiagonal G~./(x; x'), ~ = y, 
represents the buildup of a phase correlation between the modes ~ and 7'. 
We see from (9) that the equation for the diagonal G~,~ takes the Form 

LG~,~(x; x') + ~ "  r . . . . . . .  uo(x) G . . . . .  (x; x') ---- ~(x -- x') (11) 
a 
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Let t> call (1 1) the Green's equation so as to distingui,~h it flom the respon>c 
equation for the nondiagonal G,.;,. In particular, t!ne response equation I\)r 
a typical nondiagonal G~_~,~ becomes 

LG~_~.~(x; x') ,-l-- ~ "  qY~_a . . . . .  ~_ouo(x) G~_e . . . .  (x; x') = 0 (12) 
o 

Our objective here is to decompose the dynamic effect of G~_,a.~ in terms of 
the modal interactions having different structures. We begin by introducing 
into (12) the expression 

G~_~.~(x; x') = G~_e.~(x; x') -7 o~,_~.j,x; x') (13) 

where G~_~.~ is a certain state to be specified later, and /1G!_ e!, is the pertur- 
bation introduced to satisfy the equality. After rearrangement, we shall put 
the resulting equation in the form 

L AG!_BJ~(x; x') -I- E "  ~_~.o._g_~_oU~(x) -dG[_~o.~(x; x') = - -RHS (14) 

where 

RHS = LO~._B,~(x; x') + ~ "qS_~ . . . . .  ~._~uo(x) O~_~ . . . .  (x; x') t l 5) 
ol 

Let us single out a product term for cr --=- --/3 from the sum of(15): 

RHS = LG~_e,.~(x; x') -7 ~ "  4),_~ . . . . .  s-,,lA.(x) G-,-s . . . .  Ix: x') 

+" @~-e,-s,=us*(x) (;:~,~(x; x') (16) 

Suppose that we define the decomposition (13) uniquely by demanding that 
the C;~_3,~ shall satisfy 

LO~_~.~(x; x') + ~ "  ~_~ . . . . .  e_~uo(x) G,;_e . . . .  (x; x') = 0 (17) 
c , ~ - 8  

This implies that we are considering perturbation about the state 67_~, 
which is different from the actual G~_;_:., only infinitesimally'. Since (17) is 
almost identical to (12) except for a product term (or = --;3) removed from 
the sum, we may replace (~-z,, by G~_z.~ in the limit as M ---- ac by virtue of 
Az. Further, the G~_,~,~ is assumed known by A~, hence (16] reduces to 
RHS = go~_z_s.~uz*G~, ~ . Therefore, returning to (14) with this RHS, we 
find that the perturbation A G  I-z1 induced by the product term for ~ = 8 
is described by 

[-a] ' E "  [-,31 L AG~_~,~(x; x') -7- ~_~  . . . . .  ~_~u~(x) AG~_~ . . . .  (x; x') 
cr 

= -~-~,-a.~ue*(x) G~<,~(x; x') (18) 
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\Ve note that the Green's equation for (lG) is precisely the same as (I1), 
whose solution is assumed known by A~. Hence the solution of( IS)  becomes 

/ i_ [_ ,  d . . t  , G,-a.AX; x ' )  = --  ,t,, ds ,1 dy G~_e.~_z(x: y) ~-,~.-,<Jte*(Y) G~,.~(y; x ' )  (19) 

where y denotes (y, s). Since the factor ~b contains g//ry, its position in the 
integrand should not be changed arbitrarily. Physically' speaking, (19) 
represents a perturbation of O(M -1/'2) which is induced by the product 
term for G = --/3 in the presence of the dynamic interactions of  all other 
product terms. We must point out that (19) has the same form as the 
variational result [Eq. (4.19) in Ref. 2] of Kraichnan. As the first-order term 
of the modal-interaction expansion for G~_e.~(x; x'), the perturbation (19) 
is all that we need to obtain the DI approximation for H. Therefore, those 
readers interested in the immediate derivation of the DI equations ma3( skip 
the remainder of  this subsection, which demonstrates that (19) is indeed the 
first-order term of the irreducible modal-interaction expansion. 

Suppose that we repeat . the perturbatiol~ procedure of the previous 
paragraph by singling out an arbitrary' product term (~ =-: --~) of (15). Then. 
the perturbation G~[~.~ induced by a typical product term. say,. for ~r = c,, 
becomes 

,d ,--,r~] 
, ta.\_~,~x; x') 

,,t 

which is also of O(M-~J~ Since G~_e.~ represents the buildup of a phase 
correlation due to the dynamic interactions of  all the product terms, we 
shall express the first-order dynamic contribution by tile elementary modal- 
interactions of the form AG~_.e!~ �9 i.e.. 

AG[- ,~  l x .  , A~F~1 , G~_~,~(x; x') = . ~_~,~ , x') -7 }-" %-~.Ax; x') (21) 
a ~  - B  

In view of (19), we see that the first A G  r-< in the above involves the diagonal 
G ..... whereas the AG~"_~,~ of the summand have the nondiagonal G~_B . . . . .  
as may be seen from (20). The G~_e . . . . . .  however, can further be expressed 
by an expansion similar to (21): 

= /1 "-<-B-~] " / IG kd (x '  G~_~ . . . .  (x; x') u~-e . . . .  ~x; x') - -  ~ "  _,_:~. . . . . . .  x ')  
t ~  - ~ - o  

(22) 
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where tile JG[_~]~.., are obtained from (19) and (20) with /3--~ 8 - (5. 
Similarly, we express the nondiagonal G~_s . . . . . .  which appear in the sum- 
mand of (22) by 

G~_~_o_,,~(x; x ')  = ArV.[-~-~--I r . . . .  [~3 . (x' x') (23) . . . .  x') + y"  , 
o ~ - ~ 3 - 0 - ~  

where the AaLcL_.,~ can be written down from (19) and (20) with 
fi ~ f i - I - e  +/x~ Thus, upon successively introducing (23) into (22) and 
the resulting expression into (21), we obtain the modal-interaction expansion 
for G~_~,~(x; x') up to the third order: 

Q_B,~(x; x') 

= -- ds j dv G~_~,~_B(x; y) ~_~,_~,~u~*(y) G~ ~,(y; x ')  

0 -7: - - ~  

"< ds' 11" dr' G~_: . . . . . . . . .  (v y') 05 ..... ~ ,o ~ .u,~: .Jv') G .(v' ' x ,, 

. t  

:~ r n •  " ds" j dy" G~-B-o-..~-~ . . . .  (Y' ; Y') (~ . . . . .  -~-o-.,jr ) 

"< G~,~,(y" ; x') if- higher-order terms (24) 

We observe that each of the modal-interaction terms in (24) starts with 
G,_,~,:_,: and ends with G . . . .  and contains an increasing number of the 
diagonal G's with the intermediate indices. Therefore, the structure of  (24) 
can be demonstrated most simply by the diagrammatics. Let us associate the 
~).~.s,~-,~ with an open circle and attach three arrow heads to it. Label each 
arrow with one of the indices of  q5 so that the incoming indices add up to 
the outgoing indices. Further, we denote the u: and G~.~ by wavy and straight 
lines, respectively, with the index ~. Then, the three modal-interaction terms 
of (24) can be represented by the diagrams in Fig. 1. Although we have 
chosen a linear configuration in G~,~, the particular configuration is 
immaterial because the diagrams are a topological representation. To be 
precise, we must associate the operator 

' ] t'ft ds f dy G~.~(x; y) 
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,~-13 

-p - 13- ~- 

(o) (b) 

Fig.  1. 

(r 

D i a g r a m s  for  the m o d a l - i n t e r a c t i o n  t e rms  of  G~_~./x: x'):  (a l  first o r d e r  

(b) second order; (c) third order. 

with all the straight lines except the last one in the diagrams; however, this 
is superfluous for our purpose here. We notice that the diagram of Fig. l(a) 
represents the elementary modal-interaction (19). On the other hand, the 
diagram of Fig. l(b) is composed of two elementary modal interactions: 
however, it cannot be split into two separate diagram~ o~" the e]ementar) 
modal interaction because of the summation restriction cr -~ ft. Similarly, 
the diagram of Fig. l(c), consisting of three elementary moda! interactions. 
cannot be reduced to the lower-order diagrams due to the summation 
restrictions ~ ~- --~? and /z ~ - - ~ -  cr. In this respect, the diagrams oF 
Fig. 1 are irreducible and hence (24) is a unique representation qf G~_e,~(x: x') 
in terms of the modal interactions involving only the diagonal G's. In 
conjunction with the DI approximation, Guderley (3~ has first put (9) in a 
matrix equation form and then expressed the inverse of the matrix in terms of 
the diagonal elements of the matrix. Upon identifying the diagonal elements 
of thematr ix  with the diagonal G~.~ and invoking an assumption similar 
to A2, we find that (24) has the same structure as his result [Eq. (4.12) 
of Ref. 3]. 

2.2. Fluctuation Equation (10) 

To develop the modal-interaction expansion for u~(x), we introduce 
into (10) the following decomposition: 

us(x)  = ~ ( x )  + Au~(x)  (25)  

By suppressing the quadratic terms in Au, the perturbation equation 
analogous to (14) becomes 

L ,Ju~ l (x)  ~- . . = ' y "  Cb . . . . .  ~2o(x) du~_](x) - -RHS (26) 
cr 
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where 

~ "  ~ . . . .  zT~(x) zT,_~(x) (27) RHS = LzT~(x)-~--., , , -  

Suppose for the moment  that the 8~(x) in (26) is replaced by uo(x). We then 
see at once that (11) also represents the Green's  equation for (26). 
This is, however, not at all unexpected, because (9) represents a linearized 
response equation of (10). For the reason to become apparent  later in 
Section 3, we shall call the quadratic terms for c~ ----- 13 and ~ - -  ~ in the sum 
of(27) the direct modal pairs and all other quadratic terms (or ~ ]3 and c, --  ~) 
the indirect modal pairs. In order to describe the perturbation induced by 
the direct modal pairs, we single out the quadratic terms for cr ---- ~ and .x -- 8 
from the sum of (27). Then, using an argument similar to that used 
in obtaining (18), we find that the perturbation Au~ ~'~-~] induced by the direct 
modal pairs is governed by 

L zh,~'=-~J/x) + y "  �9 . . . . . . .  us(x) ,, u,~_'o ~ ~ ~-']'tx)" 
r 

= -~,,;~,~_~u~(x) u~_Ax) (2~) 

Since the Green's function for (28) is the solution of (11), which is assumed 
known by A~ , the solution of (28) becomes 

d 

,',u~ " [~' ~-,31(x) = --  "]~o ds <[ dj' G~,~(x: y) q5 . . . . .  . . . . . . . . .  ;ir u~_:(y) (29) 

This is a perturbation of O(M -1/~ induced by tim direct modal pairs in the 
presence of the dynamic interactions of all indirect modal pairs. We shall 
call Zlu~ ~'~-~] the direct pair modal interaction, and it has the same form as 
the variational result [Eq. (11.26) of  Ref. 2] of Kraichnan. Again, we point 
out that the perturbation (29) is all that is required t-o obtain the DI  
approximation for S. In the remainder of  this subsection, however, we shall 
show that (29) is the first-order term of the irreducible modal-interaction 
expansion for G(x). 

Repeating the perturbation procedure for (29), we find that the pertur- 
bation ilu~ . . . . .  ] induced by the typical indirect modal pairs, say for (x = o 
and ~x - -  (x, becomes 

= -- ds ( dy G~,Jx; y) q) . . . . . . .  u~(y) u~_~(y) (30) 
d 

This indirect pair modal interaction is also of  O(M-1 "). In view of the.non: 
linear structure of (I0), we shall postulate that the dynamic contribution of 
u~(x) can be split into a certain noninteractive part  /~(x) and the modal 
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interactions of  various forlns. Then,  for the modal- interact ion expansion of  
first order,  we shal l  take into account  the modal  interactions of  the form 
Au~ I which involve only one modal  pair, i.e., 

.~(x) = ~ ( x )  + ~u~B.~-~(x) + Y" ,J~,~~ (31) 

At this stage of  expansion,  /i~(x) would represent  a fictitious velocity field 
f rom which are removed  the dynamic  effects o f  moda l  pairs. To  obtain the 
second-order  moda l  interactions,  we shall sort  out  f rom the Au~ ~1 a class o f  
the indirect moda l  pairs that  Call be linked up to either/3 or .~ --  fi by way of  
an intermediate  mode.  To  carry out this systematically,  we first single out 
the moda l  pairs U~Uo_~ and u~_~uo_~+~ f rom the equat ions i%r uo and obtain,  
similar to (31), 

= Au;" (x) + ~ . . T "  u~(x) /L~(x) r3 o-~l Au [~-~ ..... +~]~x) + ,., AuM(x) (32) 
D ~ J ,a-- j3 

= e~--8,c,- :~--B 

Then,  singling out the modal  pairs ueu, s ~ and u~_eu~s_~ from the equat ions 
for u . . . .  we obtain  

u=_~(x) //~_o(x) + ,'l~_~ tx) + . . . .  - ,  =- _ 
u~3,a--S--c~ 

~-s,,~-~ (33) 
a, 

Here ,  the ,._I u[ ] can b~ ~ri t ten down explicitly f rom (29) and (301) ~ ith a p roper  
in terchange of  indices. In t roduct ion  of  (32) and  (33) into (31) gives the leading 
terms in the modal- interact ion expansion for u~(x): 

.ds j" dy G~,.~(x; y) q)~,.~ ~_~u~(y) u=_~(y) u~(x) = ~ ( x ) -  J 
to 

(A) 

ds t" dy G~,~(x; y) ~ . . . . . . .  ifo(y) fi~_~(y) 

(B) 

--//~ f t [  ds'f @'G . . . . . .  (y; y ' )  

• [05 . . . .  B . . . . .  ~u~(y') u~_B_o(y') + / ?  ~ a - - /3]  

(C) 

-- i7~_,~(,') t'[, ,ls' f dy' O~,,~(y; y') 

(D) 
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i 

x 

-.S 

t Us' j dy' G<,.~(y: y')[qS~,~.o_f3u,3()")uo_s(y') @ /3-+ a -- fl] 

.8 
ds" j dr" G~ 2 . . . . .  (y; y") 

~tO 

• [~  . . . .  ~,~_~_ou~(y") u~_~_~(y") + ]3-~ o, - ]3] 
(E) 

' higher-order terms~ t (34) 

where the second term in each square bracket can be written out explicitly 
by using/3 ~ a -- ]3 in the first term. 

For easier reference to the modal-interaction terms of (34), we have 
labeled them alphabetically. Since t he  term (B) cannot induce dynamic 
interaction with either 13 or ~ - / 3 ,  it will be dropped from the further 
discussion. Here, again, the structure of(34) will be examined by the diagram- 
matics. In addition to the diagrammatic notations of Section 2. I, we shall de- 
note/7~ by the same wavy line as u~. Then, the direct pair modal interaction 
(~) can be represented by the treelike (logged down) diagram of Fig. 2(a). 
The next higher-order modal-interaction terms (C) and (D), which all contain 
a factor/7, are represented by the typical diagram of Fig. 2(b). Finally, the 
modal-interaction (E} has the diagrammatic representation of Fig. 2(c). 
Since the diagrams of Figs. 2(b) and 2(c) cannot be broken down into the 

m ~ = 6 , 

<x iJ r  D'~ 

(o) (b} 

Fig. 2. 

M o( _ 

(c) 

Diagrams for the modal-interaction terms of u~(x): (a) first order; (b) second 
order; (c) third order. 
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lox~er-order ones. due to the summation restrictions, we can claim (34) to 
be the irreducible diagram representation. 

3. T H E  D I R E C T - I N T E R A C T I O N  A P P R O X I M A T I O N  

By introducing the modal-interaction expansions of Section 2 into 
(7) and (8), we can formally obtain the irreducible diagram expansions for 
S(x; x') and H(x; x') in a straightforward manner. Since the random coupling 
coefficients result in cancellation of all but the lowest-order irreduble diagram 
terms, it suffices to consider only the first-order modal-interaction terms (19) 
and (29) for the DI approximation. However. in order to exhibit consistency 
of the irreducible diagram expansions, we shall show that certain higher- 
order terms of S(x; x') and H(x; x') under all 95 = 1 can be compared with 
the results obtained previously by other theories (~-,4.~) 

H(x, t; x', t'). Let us introduce into (8) the modal-interaction expansion 
for G,_,~,,, (19) or (24). We then find that the leading term of H(x; x') becomes 

H(x, :; x', t') 

= C \.1 r ds ,t d'V-~x G~_~,~_~(x; y) ~ . . . . . . .  / 

-'- higher-order terms of O(4 'r (35) 

where 

C = ~ - 1  ~'~pt ~:~,B,a_B(~,~_B _~,~ " 

, We shall introduce the further assumptions ~) that (i) the ensemble average 
commutes with the integral and differential operations, (ii) due to the statis- 
ticaI sharpness of G . . . .  

,/,G~_~ .... ~(x; y) u,~(x) u~*(y) G~,~(y; x')> 

--* (,G~_~,~_~(x; y)),(u~(x) Us*(y))<G,,..,(y; x') ;  

and (iii) C = 1 under the random coupling model. Orszag ~6~ has criticized 
the assumption (ii) on the ground that it is responsible for the violation of 
Galilean invariance by the DI equations. Upon randomizing the phase of 95, 
the higher-orderterms not shown explicitly in (35) all drop out in the limit 
as M --+ m. Hence, in view of the statistical properties mentioffed above and 
in Section 1, Eq. (35) takes the following form without approximation: 

8 .t r 
H(x, t; .'r t') = 8--~ J t" ds ) dy G(x; y) ~ [U(x; y) G(y; x')] (36) 
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This is the DI approximation, which agrees with the result [Eq. (11.23) in 
ReE 2] of Kraichnan. 

To exhibit the consistency of the irreducible diagram expansion, let 
us examine the next higher-order term of (36) which survives under the 
special condition that all ~ = 1 and the u~ have a Gaussian distribution. 
Instead of  writing out the complicated expression in detail, we shall contend 
here with the examination of the skeleton structure of such a higher-order 
term by the diagrammatics. To this end, we drop all the arrows and indices 
from the diagram of Fig. l(c), Combining such an abridged diagram with 

which represents the factor q~.a.~_~u,,(x) in (8), ~e find that the irreducible 
configuration upon pairing the wavy lines is given by Fig. 3, in which 

U 

and 

It can be shown that the diagram of Fig. 3 corresponds to the analytical 
expression of Kraichnan's inadmissible higher approximation (Section 6 
of Ref. 2). Furthermore, it reduces to a first-order term of the G-expansion 
obtained by Lee (Fig. 15 of Ref. 4) upon introducing the modiiied vertex 
operator. 

S(x, t; x', t'). Since the triple moment S(x; x') is made up of the triad 
modal-interactions, the irreducible diagram expansion of (7) involves three 
modal-interaction expansions for u~'L u,~, and u~_,~, respect!vel). Let us first 
develop the modal-interaction expansion for zt~* by singling out the direct 
modal pairs 2ue*u~*_s, v~hich becomes, in view of (29) or (34). 

( x )  - ' = ( x )  - t 
�9 J t O 

ds i dy G~,,~(x' ; y) qS~s,~_eu~*(y ) u~e(y) + "'" (37) 

Fig. 3. Abridged diagram for the second-order term of H(x, t; x', t'). 
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Similarl). by singling out the direct modal pairs 2u,uf_~ and 2u,u:*. the 
modal-interaction expansions for ue and u~_;~ become, respectively. 

. t  

ds J" dy Gs,s(x ; y) q~.~,,~-d(,(Y) ui*--~(y) 5- "" (38) uAx) = ~ ( x )  - j 
go 

.o_~(,,) = ~o_~(x) - [ '  ds ( dy o~_~.o_~(x : y) l l t 3 'g (y )  + @ l g 

t o (39) 

The three dots in the above represent the higher-order terms similar to those 
of  (34). Introducing (37)-(39) into (7), we find that the lower-order terms of 
S(x; x') become 

S(x, t; x', l') 

1 
2 M- '  "-~ ~ "  <4~,.;,.=_~ ~ ~_B(x)/i~*(x')) - ~ G(x) 

, C <.t,, ~ ~ [G(y) iT~*(x')u:_~(v)iT~_~(x)]) ' 2 J ds .f 4 ' w  aL~(,,; y) e,--: ~ - 

o . " 6x O~_~._,_:3(x: y) ~ [GtY)/7,'(x') u;(y) ~(x)] > 

C <O", f ~, ~ [t,,*(v)~c(x),Z_~(y, iT.,_:~(x)]) ' 2 ds .  dy--Ex-Q.dx ' ;y)  &--7 . . 

~- higher-order terms of O(& :~) (401 

where C is defined as in (35). The dynamic significance of (40) is that it 
describes buildup of the triple moment in terms of the modal interactions 
having different structures. Since the first term is the triple moment in a 
fictitious field of no triad modal interaction, we may identify' it with the 
initial value of the triple moment. Then. it assumes zero value under tlne 
initial Gaussian condition. By invoking A.,, we can justify (i~u=*) -~ ,~uAcS) 
iri" the limit as M--* .=c. Using the statistical assumption> mentioned 
previously', we find that (40) reduces to give 

J ( '  f e G(x" y) a [U(x" y) U(x' ; y ) ]  S(x, t ; x', t') = ds dy ~,--7"x ' ~ ' 
t o 

+.~1 j to ds J" d y - [ 7  x G(x' �9 y) ,  ~ [U(x �9 y)]'-" (41) 

This is the DI approximation, which agrees with the result [Eq. (11.12) in 
Ref. 2] of" Kraichnan. Note that (41) is the exact result, for the higher-order 
terms not shown explicitly in (40) would make no contribution under the 
random coupling model. 
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+ +  
(o) (b| 

Fig. 4. Abridged diagrams for the two second-order terms of S(x, t; x', t'). 

Before closing, we shall briefly examine the next higher-order terms of  
(41) which survive under  the same condit ion as in the discussion of  H(x;  x'). 
Using the abridged diagram representation, the skeleton structure o f  the 
two second-order terms can be demonstrated by Fig. 4. The first d iagram 
(Fig. 4a) is made up of  two 

and a 

r162 

We see that  it is included in Wyld 's  first-order term for the U-expansion 
(Fig. 5 of  Ref. 5), when the modified vertex operator  is introduced.  On the 
other hand,  the second diagram (Fig. 4b), consisting of  

</ 
-'~'~"~ , an d y ~ - -  

is Jncladed in Wyld 's  second-order  term. 
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