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An alternate method is presented of obtaining the direct-interaction equations
by combining the heuristic and rigorous derivations of Kraichnan. Within
the framework of the model dynamic representation of Kraichnan's rigorous
theory, we have developed the irreducible diagram expansion systematically
by formalizing the perturbation argumeni of his heuristic derivation, It is
hoped that the present work will provide a further insight into the analytical
structure of the irreducible diagram expansion and bridge the gap apparent
in the two original derivations of the direct-interaction eguations given by
Kraichnan.

KEY WORDS: Kraichnan's direct-interaction approximation; model dyna-
mic representation; irreducible diagram expansion: modal-interaction per-
turbation technique; Burgers’ model turbulence: statistical turbulence
theory.

1. PROBLEM STATEMENT

For the covariance level of closure for a turbulent flow problem.
Kraichnan'-? has presented two distinct—one heuristic and one rigorous —
derivations for the so-called direct-interaction (DI) equations. In the earlier,
heuristic approach.™ the DI equations were obtained by computing the first-
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order contribution of the unknown moments in the covariance and averaged
response equations from a perturbation induced by the direct-interaction
terms. Although this derivation appeals strongly to physical motivation,
the importance of this approach is the novel idea of developing perturbation
about a certain flow state which is slightly different from the actual turbulent
flow. This sort of perturbation will also play a very essential role in our
modal-interaction expansion. Kraichnan’s later rigorous approach® involves
imbedding the actual dynamic equation in a model dynamic problem which
1s constructed by assigning the random coupling coeflicients to the nonlinear
terms. The essential ingredient of this approach is the irreducible diagram
expansion of the unknown moments in the covariance and averaged response
equations. Since the random coupling coefficients bring about cancellation
of all but the lowest-order irreducible diagram terms upon averaging, the DI
-equations are obtained as the exact statistical description of the model
dynamic problem. Kraichnan has obtained the irreducible diagram expansion
by invoking a variational argument which is somewhat intuitive and hence
difficult to understand. Furthermore, his variational procedure does not -
render itself readily to a systematic evaluation of the full irreducible diagram
expansion, although this may be an academic question at the present siage of
the turbulence theory.

The purpose of this paper is to show that an alternate way of deriving the
DI equations is by combining the two distinct methods of Kraichnan that
we have just described. Working with the model dvnamic representation of his
rigourous derivation, we shall show that the irreducible diagram expansion
can be developed systematically by formalizing the kind of perturbation
argument that Kraichnan has used in his heuristic derivation. This new
perturbation procedure will be called the modal-interaction perturbation
because it allows us to decompose the dynamic contribution of a certain
moment in terms of the modal interactions of various forms. Since the modal-
interaction perturbation is prescribed by a formal procedure. we can obtain
the irreducible diagram terms of aribtrary order in a completely systematic
manner. It is therefore hoped that the present work will provide a further
insight into the analytical structure of the irreducible diagram expansion and
interrelate the two original derivations of the DI equations given by
Kraichnan. Further, we shall state explicitly all the underlying assumptions
involved in the DI approximation. In fact, they are neither stronger nor
weaker than those invoked implicitly by Kraichnan. In the interest of readers
who do not wish to delve into the details, the subsequent sections are
subdivided into two parts: the first dealing with the immediate derivation
of the DI equations and the second part demonstrating consistency of the
irreducible modal-interaction expansions.

As a prototype of the Navier-Stokes equations, the Burgers turbulence
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equation has the following dynamic model representation using the notations
of Ref. 2, Eqgs. (11.11)—(11.13):
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where v is the kinematic viscosity and < : denotes the average over an

ensemble of M identically and independently distributed realizations. The
reality requirement states u,(x, 1) = u* (x, t), where the asterisk denotes the
complex conjugate. Note that we omit @ = 0 in 3/ and both § = 0 and
B = ain Yj. The random coupling coefficients ¢, .5 are assumed to be
the same for every realization in the ensemble. and the true problem corres-
ponds to all ¢ = 1. The ¢'s are subjected to the following dynamic
restrictions:

¢m,5,a—ﬁ =¢u.a—5,5 ’ ¢—a-—5-—u+ﬁ = qszﬁ.a—ﬁ ’ qS -8, —ﬁ o T ¢>1 B8.a—2

The mean equation (1) and the fluctuation equation (2) are coupled through
the Reynolds shear stress and mean-fluctuation terms, and hence they
describe the evolution of the mean and fluctuation fields. The response
equation (3) describes the perturbation of u,(x.r) with respect to an
infinitesimal disturbance of mode y introduced at (x’. ).

Kraichnan'® has demonstrated the following statistical properties: For
the identically and independently distributed realizations, we have

G, (X, 1) > =0 (a++ B+ =0)
G, X, ) =0 (x % ).

and

Under the additional assumption that the realizations have an initial multi-
variate Gaussian distribution, the covariance

Ulx, t; X', t") = Qu(x, 1) u*(x', 1)

822/4/2/3-7
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and the averaged response function G(x,¢; X', 1") == <G, [(x, r:x, 1), are
independent of «. Furthermore, G, , is statistically sharp in the limit as
M — oo and

Cual, 1) 1,5 (X, 1) us(y, 5) us™(5' 5
- <ua(xs t) ua*(x’a t,)><ll/3(y, S) uB*(y,’ S’)> + O(M_l)

In view of this, the statistical equations of the covariance-level can be
formulated from Egs. (1)-(3):
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where
S(x, 1;x', 1))
= — 3 MY (e 0ms8/63) s, 1) 11, (v, ) 1, KX, 1)y (T)
5 .

H(x, t; x',t")
= — M1 Z” <¢a,3.a—-ﬁ(a/a'\f) llg(x, t) Ga—B,a('\’a ta x,a l’)> (8)
8

Equations (4)~(6) are the same as Egs. (11.21), (11.17), and (I1L.18) of
Kraichnan,® who closed them by developing the irreducible diagram
expansions for S and H using a variational argument. We shall first obtain
in Section 2 the irreducible modal-interaction expansions for u, and G, , .
Such expansions, when introduced into (7) and (8), will give the desired
irreducible diagram expansions for S and H, which in turn yield the DI
approximation when we randomize the ¢ (Section 3).
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2. THE MODAL-INTERACTION PERTURBATION
EXPANSIONS

Let us write for simplicity the dynamic equations (2) and (3) in the
following forms: . . :

LG&,‘Y(X; X,) + Z” @m,a,u—auc(x) Ga—a,v(X; xl) = 83,7 S(X - X’) (9)

Lua(x) _f_ El:‘- Z” @C(,G,&—O’llo(x) Ll!!—!](x) = 0 (10)

where x denotes the space-time vector (x, t),
L = (¢/ery — w(e¥ex?) + (¢/ex) ix, 1),

and D, 5., p= M2, 5 . 5 ¢/0x. We shall stipulate the following properties
of (9) and (10) as the basic underlying assumptions for the modal-interaction
perturbation to be presented:

(A It is assumed that G, .(x; x") and u,(x) are known as the respective
solutions of (9) and (10).

(A;) The G, (x;x") and u(x) are affected only infinitesimally when we
remove a few product terms from the convolution sums.

The first assumption A, seems rather strange at first sight because it
presupposes knowledge of the problem solution. This, howewer, reflects the
quirk of modal-interaction expansion in that each term of the expansion
expresses an interaction made, up of the factors G, 5 and u,. Here, we do
not look for the perturbation solutions of (9) and (10) in the usual sense.
Since there are infinitely many product terms in the convolution sum of (9)
and (10), we.can justify the second assumption A, by noting that each product
term of O(M~1/%) can influence the G, .(x; X"} and u.(x) only infinitesimally
in the limit as M — oo. We shall first develop the modal-interaction expansion
for G, .(x:X"), which is somewhat simpler than that for w(x) due to the
linearity of (9). A

2.1. Response Equation (9)

It is important to observe that the diagonal G, (x;x’) describes the
propagation of disturbance, whereas the nondiagonal G, . (x;x'), o = v,
represents the buildup of a phase correlation between the modes o and 4.
We see from (9) that the equation for the diagonal G, , takes the form

LGa,a(x; X() + Z” @a,o,a—-cua(x) Go.—cr,oz(x; X’) = S(X - X') (11)
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Let us call (11) the Green's equation so as to distinguish it from the response
equation for the nondiagonal G, ., . In particular, the response equation for
a typical nondiagonal G,_g , becomes

LGa—B.a(X; x,) + Z” ®a—3,a,n—3—allo(x) G;—.’?—U,A(X; X’) = O (12)

Our objective here is to decompose the dynamic effect of G,_, , in terms of
the modal interactions having different structures. We begin by introducing
into (12) the expression

Gog ol X3 X)) = Gga(x; X') - AGLG (x5 x) (13)

where G, _; , is a certain state to be specified later, and 4G, is the pertur-
bation introduced to satisfy the equality. After rearrangement, we shall put
the resulting equation in the form

LAGL LX) + ¥ ®op o dmpate(X) 4G, ((x;X) = —RHS  (14)

where
RHS = LC:&»B,&(X; X!) 'i— Z ” (pa-—ﬁ,cr,u—fs‘—q“o(x) Cza—ﬁ-c,a(x; X,) (15)
Let us single out a product term for ¢ == —j3 from the sum of (135):
RHS = LG, .(x;X) + Y D, ;o5 ttdX) G, g, (X1 X)
+ B ot (%) G X)) (16)

Suppose that we define the decomposition (13) uniquely by demanding that
the G, _; , shall satisfy

Léa-a.a(XQ X + Z” D010 —oto(X) G&—ﬁ-o.o(xl x) =0 (17
This implies that we are considering perturbation about the state G . .
which is different from the actual G,_. ., only infinitesimally. Since (17) is
almost identical to (12) except for a product term (¢ = —fB) removed from
the sum. we may replace G,_; , by G,_s., in the limit as M — oc by virtue of
A, . Further, the G, 5, is assumed known by A;, hence (16) reduces to
RHS = D, _; _4,us*G,,, . Therefore, returning to (14) with this RHS. we
find that the perturbation 4G{73, induced by the product term for o = —f8
is described by

LAGEE (X)) + T By o amsott(x) 4G (x: %)

= =B,y (X) G (X X) (18)
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We note that the Green's equation for (18) is precisely the same as (11).
whose solution is assumed known by A; . Hence the solution of (18) becomes

4

AGE:‘QL(X; X)= — ’ , ds | dy Gy_p.aes(X2¥) Dy 5. 11:(Y) G, W(¥: X') (19)

vt

where y denotes (), s). Since the factor @ contains ¢/¢y. its position in the
integrand should not be changed arbitrarily. Physically speaking, (19)
represents a perturbation of O(M-1/?} which is induced by the product
term for o == —f in the presence of the dynamic interactions of all other
product terms. We must point out that (19) has the same form as the
variational result [Eq. (4.19) in Ref. 2] of Kraichnan. As the first-order term
of the modal-interaction expansion for G,_; .(X; x'), the perturbation (19)
is all that we need to obtain the DI approximation for H. Therefore. those
readers interested in the immediate derivation of the DI equations may skip
the remainder of this subsection, which demonstrates that (19) is indeed the
first-order term of the irreducible modal-interaction expansion.

Suppose that we repeat-the perturbation procedure of the previous
paragraph by singling out an arbitrary product term (¢ == —3) of (13). Then.
the perturbation G | induced by a typical product term. say. for o = o,
becomes ‘

AGZ@CQ(X7 x')

ot
/ ds ( Ay Guegiamp(X:0 ¥) Pocgoamp-ote(¥) Gacso oy X)) (20)

ct

which is also of O(M~1?). Since G, ;, represents the buildup of a phase
correlation due to the dynamic interactions of all the product terms, we
shall express the first-order dynamic contribution by the elementary modal-
interactions of the form 4GL_J1 :ie..

Goopn(x; x) = AGTE (x: x) + T7 4G, (x; X)) (21)

oF —B

In view of (19), we see that the first 4GL8! in the above involves the diagonal

a—f,x

G,.., whereas the 4G} | of the summand have the nondiagonal G, 5., .

as may be seen from (20). The G,_;_, .. however, can further be expressed
by an expansion similar to (21):

GoswalXs X') = 4G5S i x) = Y7 4AGH. L (xix)  (22)

. ust =30
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where the AG!_ .1 are obtained from (19) and (20) with 38— 5 — o.
Similarly, we express the nondiagonal G,_s_,_,. . which appear in the sum-
mand of (22) by :

GacpomualX; X) = AGTELGX) + Y 4G ouaxiX)  (23)

p5E—B—o—u

where the 4Gt 1, can be written down from (19) and (20) with
B — B + o + u. Thus, upon successively introducing (23) into (22) and
the resulting expression into (21), we obtain the modal-interaction expansion

for G,_s ,(x; X) up to the third order:

Ga—B.a(x; x’)
t

= - -J‘t' ds J‘ d.V Ga—B,a—B(x; y) @a—ﬂ.—ﬁ,auﬁ’*(y) Ga.a(y; XI)

+ Z” J.t‘

oz —g vt

ds J d_}’ Gd—B,a—B(X; y) ¢Q—B,o,a—6—clla(y)
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x G, .(y";X') -~ higher-order terms 024

We observe that each of the modal-interaction terms in (24) starts with
G,_s..-¢ and ends with G, ,, and contains an increasing number of the
diagonal G's with the intermediate indices. Therefore, the structure of (24)
can be demonstrated most simply by the diagrammatics. Let us associate the
arrow with one of the indices of @ sc that the incoming indices add up to
the outgoing indices. Further, we denote the u, and G, , by wavy and straight
lines, respectively, with the index o. Then, the three modal-interaction terms
of (24) can be represented by the diagrams in Fig. 1. Although we have
chosen a linear configuration in G,,, the particular configuration is
immaterial because the diagrams are a topological representation. To be
precise, we must associate the operator

at
[ ds [y Goalsy)

‘v
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«-0 & -3 x- B - «
§—B gc %‘p-c
(a) (b}
-0 x-B-o x~Bro-n «
o

I

Fig. 1. Diagrams for the modal-interaction terms of G._p (x:x') (a) first order:
(b) second order; (c) third order.

with all the straight lines except the last one in the diagrams; however. this
is superfluous for our purpose here. We notice that the diagram of Fig. 1(a)
represents the elementary modal-interaction (19). On the other hand, the
diagram of Fig. I(b) is composed of two elementary modal interactions:
however, it cannot be split into two separate diagrams of the elementary
modal interaction because of the summation restriction ¢ = — 8. Similarly,
the diagram of Fig. 1(c), consisting of three elementary modal interactions.
cannot be reduced to the lower-crder diagrams due to the summation
restrictions ¢ = —f and u = —f — o. In this respect, the diagrams of
Fig. I are irreducible and hence (24) is a unique representation of G,_; ,(x: x')
in terms of the modal interactions involving only the diagonal G's. In
conjunction with the DT approximation, Guderley® has first put (9) in a
matrix equation form and then expressed the inverse of the matrix in terms of
the diagonal elements of the matrix. Upon identifying the diagonal elements
of the ‘matrix with the diagonal G, . and invoking an assumption similar
to A,, we find that (24) has the same structure as his result [Eq. (4.12)
of Ref. 3].

2.2. Fluctuation Equation (10)

To develop the modal-interaction expansion for u,(x), we introduce
into (10) the following decomposition:

U (x) = @(x) + dui(x) (25)

By suppressing the quadratic terms in dw, the perturbation equation
analogous to (14) becomes

Ldul %) + Y7 D, 0o, (x) Al _J(x) = —RHS (26)
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where

RHS = Li(x) = } 3" D, ;o ,i4X) iL,_,(X) (27)
Suppose for the moment that the #,(x) in (26) is replaced by u,(x). We then
see at once that (11) also represents the Green's equation for (26).
This is, however, not at all unexpected, because (9) represents a linearized
response equation of (10). For the reason to become apparent later in
Section 3, we shall call the quadratic terms for o == 8 and « — § in the sum
of (27) the direct modal pairs and all other quadratic terms (o = Sfand a — j)
the indirect modal pairs. In order to describe the perturbation induced by
the direct modal pairs, we single out the quadratic terms for¢ = Sand x — B
from the sum of (27). Then, using an argument similar to that used
in obtaining (18), we find that the perturbation dul®**! induced by the direct
modal pairs is governed by

L All[B a=3] X) | Z// @a . aoll (X) AM[B m-8](\)

= —D_ o ths(X) Uy_p(X) (28)

Since the Green’s function for (28) is the solution of (11), which is assumed
known by A4, , the solution of (28) becomes

AulP iy = — “t ds ’ dv G, (X0 ¥) D, o _suiy) 1, {¥) (29)
This is a perturbation of O(M~1/?) induced by the direct modal pairs in the
presence of the dynamic interactions of all indirect modal pairs. We shall
call du!®**) the direct pair modal interaction, and it has the same form as
the variational result [Eq. (11.26) of Ref. 2] of Kraichnan. Again, we point
out that the perturbation (29) is all that is required to obtain the DI
approximation for S. In the remainder of this subsection, however, we shall
show that (29) is the first-order term of the irreducible modal-interaction
expansion for u,(x}).
Repeating the perturbation procedure for (29), we find that the pertur-
bation dul”*°) induced by the typical indirect modal pairs, say for ¢ = o
and « — o, becomes

X '
Aoy = — [ ds [ dy Guali 1) Bupa V) ualy)  (30)
©ty
This indirect pair modal interaction is also of O(M~12). In view of the.non:

hnear structure of (10). we shall postulate that the dynamic contribution of
u,(x) can be split into a certain noninteractive part i1,(x) and the modal
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interactions of various forms. Then, for the modal-interaction expansion of
first order, we shall take into account the modal interactions of the form
Aul 1 which involve only one modal pair, i.e.,

u(X) = G(x) + P+ Y Aulx) (31)

o5#B8,a—8

At this stage of expansion, i, (x) would represent a fictitious velocity field
from which are removed the dynamic effects of modal pairs. To obtain the
second-order modal interactions, we shall sort out from the 4ul°) a class of
the indirect modal pairs that can be linked up to either S or « — B by way of
an intermediate mode. To carry out this systematically, we first single out
the modal pairs ugu,_g and u,_gu,_..; from the equations for u, and obtain,
similar to {31),

-3
X

uX) = i,(x) + duf? ok x) + Aulfoilxy o Z” L) (32)
o

m

Then, singling out the modal pairs w, , . and u,_gu,_, from the equations
for u,_, , we obtain

Uy_o(X) = T, o(x) + B2 Nx) + AulPo-Yx) — Y leg“.]o(x)
w=3.a2—8-—0
=a-3,5— (33)

Here, the dui Jcan bé written down explicitly from (29) and (30) with a proper
interchange-of indices. Introduction of (32) and (33) into (31) gives the leading
terms in the modal-interaction expansion for u,(x):

at -
U(X) = U (X) — -Jt s J dy G,.o(X; Y) D p.amstts(y) Ussty)
{3
- ) ‘ ds ‘ dy G, o(x; Y)CDMQ_G ,u oY) T, AY)

c=3,0—8 * to
(B)

—q (y) ds f & Gogas¥3 Y)

X [®a—a,8.m—a—8u3(y1) ua—ﬂ—o(y’) ; B - X ;B]
©
oY) { Is’ f dy" G, ,(y; ¥)

C ity

(Do g.0-ptta(¥) Us—g(y') + B—> x — f]
(D)
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-+ l ds’ ’ dy' G, (Y YNDy 5 ompttY') Uiy -+ B—a— /B]

N o

x J ds” [ di" Goloualys ¥

to

X [@a—a.B‘a—B—ouB(y”) ua—B—o’(y”) + 18 - & — IBI
4

-+ higher-order termsi (34)

where the second term in each square bracket can be written out explicitly
by using 8 — « — § in the first term.

For easier reference to the modal-interaction terms of (34), we have
labeled them alphabetically. Since the term (B) cannot induce dynamic
interaction with either 8 or o — B, it will be dropped from the further
discussion. Here, again, the structure of (34) will be examined by the diagram-
matics. In addition to the diagrammatic notations of Section 2.1, we shall de-
note i, by the same wavy line as u, . Then, the direct pair modal interaction
(A) can be represented by the treelike (logged down) diagram of Fig. 2(a).
The next higher-order modal-interaction terms (C) and (D), which all contain
a factor #, are represented by the typical diagram of Fig. 2(b). Finally, the
modal-interaction (E) has the diagrammatic representation of Fig. 2(c).
Since the diagrams of Figs. 2(b) and 2(c) cannot be broken down into the

Fig. 2. Diagrams for the modal-interaction terms of w.(x): (a) first order; (b) second
order; (¢) third order.
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lower-order ones. due to the summation restrictions. we can claim (34) to
be the irreducible diagram representation.

3. THE DIRECT-INTERACTION APPROXIMATION

By introducing the modal-interaction expansions of Section 2 into
(7) and (8), we can formally obtain the irreducible diagram expansions for
S(x; x") and H(x; X") in a straightforward manner. Since the random coupling
coefficients result in cancellation of alf but the lowest-order irreduble diagram
terms, it suffices to consider only the first-order modal-interaction terms (19)
and (29) for the DI approximation. However, in order to exhibit consistency
of the irreducible diagram expansions, we shall show that certain higher-
order terms of S(x; x') and H(x; x") under all ¢ = 1 can be compared with
the results obtained previously by other theories®4.3

H(x, t; X', t’). Let us introduce into (8) the modal-interaction expansion
for G,.4,, , (19) or (24). We then find that the leading term of H(x; X") becomes

~t - ] n )
= (] ds [ dr o Gusarss ) = [0 07(9) Gty X )
Jo B X /

-+ higher-order terms of O(¢%) (35)
where
C - 4M—1 z” qsag,B.a—B(r{)e—B.-—B,a -

- We shall introduce the further assumptions'® that (i) the ensemble average
commutes with the integral and differential operations, (ii) due to the statis-
tical sharpness of G, , ,

(Gamgaa(X1Y) 1y(X) 1,7(y) G, (¥5 X

M a—B.

= (G ae X0 ¥)-us(X) ug ()G, (Y X))

and (iii) C = 1 under the random coupling model. Orszag'® has criticized
the assumption (i) on the ground that it is responsible for the violation of
Galilean invariance by the DI equations. Upon randomizing the phase of ¢,
the higher-order terms not shown explicitly in (35) all drop out in the limit
as M — oo. Hence, in view of the statistical properties mentioned above and
in Section 1, Eq. (33) takes the following form without approximation:

. .
Hix, t; %, 1) = — [ ds [ dv Gixy y) —0— [Ux;y) Gly; x)] (36)
oX Jy cy
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This is the DI approximation. which agrees with the result [Eq. (11.23) in
Ref. 2] of Kraichnan.

To exhibit the consistency of the irreducible diagram expansion, let
us examine the next higher-order term of (36) which survives under the
special condition that all ¢ = I and the u, have a Gaussian distribution.
Instead of writing out the complicated expression in detail, we shall contend
here with the examination of the skeleton structure of such a higher-order
term by the diagrammatics. To this end, we drop all the arrows and indices
from the diagram of Fig. 1(c). Combining such an abridged diagram with

A

which represents the factor @, ;5 ,_u.{x) in (8), we find that the irreducible
configuration upon pairing the wavy lines is given by Fig. 3, in which

U — —o

and

It can be shown that the diagram of Fig. 3 corresponds to the analytical
expression of Kraichnan’s inadmissible higher approximation (Section 6
of Ref. 2). Furthermore, it reduces to a first-order term of the G-expansion
obtained by Lee (Fig. I5 of Ref. 4) upon introducing the modiiied vertex
operator.

S{x, t; X, t’). Since the triple moment S(x; x'} is made up of the triad
modal-interactions, the irreducible diagram expansion of (7) involves three
modal-interaction expansions for u,*, 5, and u,_,, respectively. Let us first
develop the modal-interaction expansion for i,* by singling out the direct
modal pairs 2u,*u” 5, which becomes. in view of (29) or (34).

a—pf

u, M (x") = 1, (x") —

At , ‘ ‘ .
ds ‘ ay G, .(X' 5 Y) (D;.H,a—BHBX(Y) uy_p(y) -+ - (37)

-

Fig. 3. Abridged diagram for the second-order term of H(x, #; x', t').
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Similarly. by singling out the direct modal pairs 2w, and 2w ™. the
modal-interaction expansions for u, and u,_; become, respectively,

of -
uy(X) = o) — | dls | dv G a(X 1Y) Pyapatt(y) 43 aly) — = (38)
LY ‘U o

ua-——B(x) = ﬁa—ﬂ(x) - (u ds '~ d_V Ga—B.a—-B(X B Y) @A—B,a.—ﬁua(y) ll{i*(y) _:_
T (39)
The three dots in the above represent the higher-order terms similar to those
of (34). Introducing (37)~(39) into (7), we find that the lower-order terms of
S(x; x") become

S, t,x7,17)
1
= — 5 ,2 <q5 8.0-6 TFT fg(x) T, _g(X) i1, *(x’ )>
, C 7 o w _
+ S ([ ds [y o ol ¥) - [(9) 76) ) Ts0])
,” &x

C ¢ Ty )
7< ds |d1———G_6M(\ ¥) = 5 [ ¥y I, (X)) 1y (y) \)]/

=) L [ G 0 AN 0]

~- higher-order terms of O(¢*) (40

where C is defined as in (35). The dvnamic significance of (40) is that it
describes buildup of the triple moment in terms of the modal interactions
having different structures. Since the first term is the triple moment in a
fictitious field of no triad modal interaction, we may identify it with the
initial value of the triple moment. Then. it assumes zero value under the
initial Gaussian condition. By invoking A4, , wecan justify (i, — Juun™>
in” the limit as M — sc. Using the statistical assumptions mentioned
previously, we find that (40) reduces to give

[U(x Y U v

S(x,t;x', 1) =f dsJ

+3 j s [ dy - GO oY) £ S UGwF (D)
This is the DI approximation, which agrees with the result {Eq. (11.12) in

" Ref. 2] of Kraichnan. Note that (41) is the exact result, for the higher-order
terms not shown explicitly in (40) would make no contribution under the
random coupling model.
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(o) (b}

Fig. 4. Abridged diagrams for the two second-order terms of S(x, 1; x’, t').

Before closing, we shall briefly examine the next higher-order terms of
(41) which survive under the same condition as in the discussion of H(x; X).
Using the abridged diagram representation, the skeleton structure of the
two second-order terms can be demonstrated by Fig. 4. The first diagram
(Fig. 4a) is made up of two

and a

We see that it is included in Wyld’s first-order term for the U-expansion
(Fig. 5 of Ref. 5), when the modified vertex operator is introduced. On the
other hand, the second diagram (Fig. 4b), consisting of

e N
I

hY

is included in Wyld’s second-order term.
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